ALPHA STRUT™ is Park Electrochemical Corp.’s proprietary composite strut. The ALPHA STRUT design combines light-weight composite materials with Park’s proprietary end-fitting which is co-cured into each end of the strut without the use of adhesives. This creates an axial load carrying component which is suitable for a variety of aircraft and other aerospace high to medium load bearing applications. The ALPHA STRUT design provides significant weight savings compared to metal struts and other composite struts.

KEY FEATURES & BENEFITS
• Utilizes light-weight composite materials
• Proprietary end-fitting eliminates the use of adhesives and/or fasteners
• Available in custom loads, lengths and diameters

APPLICATIONS
• Primary and Secondary Aircraft Structures
• Tie Rods
• Push/Pull Control Rods
• Monument Bracing
• Truss Structures
• Bulkheads
• Other Aerospace High to Medium Load Bearing Applications

PRODUCT FORMS
• Working tensile/compressive loads to 1,100 lbs (489 daN)
• Typical lengths ranging from 6” to 30” (152-762mm)
• Typical diameters ranging from 0.5” to 1.5” (13-38mm)
• Other loads, lengths and diameters are available

Example of a rod end incorporated into Park’s ALPHA STRUT™
PARK’S PROPRIETARY END-FITTING DESIGN

Park’s proprietary end-fitting is co-cured into each end of the strut without the use of adhesives. This technique creates an axial load carrying component which can be fitted with a variety of threaded rod end bearings, clevises, etc. The picture to the right illustrates an end-fitting with a spherical rod end bearing.

SAMPLE ALPHA STRUT SPECIFICATIONS

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Loads</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tube Length</td>
<td>Tension Limit / Ultimate Load</td>
</tr>
<tr>
<td></td>
<td>Strut Outer Diameter (ref)</td>
<td>1,100 / 2,200 lbs (489 / 979 daN)</td>
</tr>
<tr>
<td>6 inches</td>
<td>0.538 inches (13.7 mm)</td>
<td></td>
</tr>
<tr>
<td>(152 mm)</td>
<td>0.017 inches (0.4 mm)</td>
<td></td>
</tr>
<tr>
<td>18 inches</td>
<td>0.845 inches (21.5 mm)</td>
<td></td>
</tr>
<tr>
<td>(457 mm)</td>
<td>0.050 inches (1.3 mm)</td>
<td></td>
</tr>
<tr>
<td>30 inches</td>
<td>1.181 inches (30 mm)</td>
<td></td>
</tr>
<tr>
<td>(762 mm)</td>
<td>0.058 inches (1.5 mm)</td>
<td></td>
</tr>
</tbody>
</table>

ABOUT PARK

Park Electrochemical Corp. is a global advanced materials company which develops and manufactures high-technology digital and RF/microwave printed circuit materials principally for the telecommunications and internet infrastructure and high-end computing markets and advanced composite materials, parts and assemblies for the aerospace markets. Park’s core capabilities are in the areas of polymer chemistry formulation and coating technology. The Company’s manufacturing facilities are located in Singapore, France, Kansas, Arizona and California. The Company also maintains R & D facilities in Arizona, Kansas and Singapore.

CONTACT INFORMATION

Telephone:
Americas +1.316.283.6500
Asia Pacific +65.6861.7117
Europe +33.5.62.98.52.90

Email:
info@parkelectro.com

Web:
www.parkelectro.com

Important Notice:

Park Electrochemical Corp. reserves the right to make changes without notice to any products described herein. Park does not assume any liability arising out of the application or use of any product described herein; and it does not grant any license under its patent or other rights or any such rights of others. Park also disclaims all warranties whether expressed, implied or statutory, including implied warranties of merchantability or fitness for a particular purpose.

Given the variety of factors that can affect the use and performance of Park’s products, some of which are uniquely within the user’s knowledge and control, it is essential that the user evaluate the product to determine whether it is fit for a particular purpose and/or suitable for the user’s method of application. These factors may include, but are not limited to, the materials to be bonded with the product, the surface preparation of those materials, the product selected for use, the conditions in which the product is used and the time and environmental conditions in which the product is expected to perform.